mocurly Documentation
Release 0.2.3

Captricity

May 10, 2018

Contents

1 Usage 3
.1 APIDocumentation i v v it ittt e e e e e e e e e e e 3
1.2 BasicUsage o i e e e e e e e 4
1.3 Advanced Usage e 5
2 LICENSE 9
Python Module Index 11

mocurly Documentation, Release 0.2.3

Author Captricity

Version 0.2.3

Date 2014/09/03

Homepage Mocurly Homepage
Download PyPI

License MIT License

Change log change-log

Issue tracker Github issues

Mocurly is a library that mocks the Recurly Python client so that you can easily write tests for applications that use
the Recurly Python client.

Mocurly acts as a mock backend for the Recurly client, allowing you to use the Recurly Python client AS IS. This
means that all your code that uses the Recurly Python client and targets Recurly objects will all work as you would
expect. Best of all: you can use the Recurly Python client to setup the test environment!

For example, suppose you had a simple function in your app that lists all the users in Recurly, and counts them:

import recurly
recurly.API_KEY = 'foo'
recurly.SUBDOMAIN = 'bar'

def count_recurly_accounts() :
return len(recurly.Account.all())

With Mocurly, you can test the above code like so:

import recurly

recurly.API_KEY = 'foo'

recurly.SUBDOMAIN = 'bar'

from mocurly import mocurly

from count_module import count_recurly_accounts

@mocurly
def test_count_recurly_accounts() :
for i in range(10):
recurly.Account (account_code=str (i)) .save ()
assert count_recurly_accounts () == 10

Within the decorator context, all calls to Recurly are captured by Mocurly, which keeps the state in memory for the
duration of the context. No actual web calls are made, allowing you to test your Recurly code without worrying about
existing context or internet connections.

Contents 1

https://github.com/Captricity/mocurly
https://pypi.python.org/pypi/mocurly
https://github.com/Captricity/mocurly/issues

mocurly Documentation, Release 0.2.3

2 Contents

CHAPTER 1

Usage

1.1 API Documentation

class mocurly.mocurly (func=None)
Main class that provides the mocked context.

This can be used as a decorator, as a context manager, or manually. In all three cases, the guarded context will
route all recurly requests to the mocked callback functions defined in endpoints.py.

register_ transaction_failure (account_code, error_code)
Register a transaction failure for the given account.

This will setup mocurly such that all transactions made by the account with the given account_code will
fail with the selected error_code.

start ()
Starts the mocked context by enabling HTTPretty to route requests to the defined endpoints.

start_timeout (timeout_filter=None)
Notifies mocurly to start simulating time outs within the current context.

You can pass in a filter function which will be used to decide what requests to timeout. The function
will get one parameter, request, which is an instance of the HTTPrettyRequest class, and should return a
boolean which when True, the request will time out.

The following attributes are available on the request object: headers -> a mimetype object that can be
cast into a dictionary, contains all the request headers.

method -> the HTTP method used in this request.

path -> the full path to the requested URI.

querystring -> a dictionary containing lists with the attributes.
body -> the raw contents of the request body.

parsed_body -> a dictionary containing parsed request body or None if HTTPrettyRequest
doesn’t know how to parse it.

mocurly Documentation, Release 0.2.3

start_timeout_successful_post (timeout_filter=None)
Notifies mocurly to make timeouts on POST requests, but only after it has caused state changes.

Like start_timeout, you can pass in a filter function used to decide which requests to cause the timeout on.

stop ()
Stops the mocked context, restoring the routes back to what they were

stop_timeout ()
Notifies mocurly to stop simulating time outs within the current context.

stop_timeout_successful_ post ()
Notifies mocurly to stop simulating successful POST time outs within the current context.

1.2 Basic Usage

Mocurly is designed to be used as a wrapper around blocks of code that needs the mocked Recurly context. Within
the context, all calls made using the Recurly Python client will talk to the mocked in-memory service instead of the
real Recurly.

In the following example, the call to the save () method of the recurly.Account class will create an instance
of the account object in Mocurly’s in-memory database, but not in your Recurly account:

>>> import recurly

>>> recurly.API_KEY = 'foo'

>>> recurly.SUBDOMAIN = 'bar'

>>> from mocurly import mocurly

>>> with mocurly () :

>>> recurly.Account (account_code="foo') .save ()

Note that you still have to set the API_KEY and SUBDOMAIN on the Recurly instance, since the Recurly client itself
has assertions to make sure they are set. However, the values you use do not matter. They also have to be set outside
the Mocurly context, as in the example.

Mocurly can be used as a decorator, context manager, or manually. In all 3 cases, the Mocurly context is reset at the
start of the invocation.

1.2.1 Mocurly as decorator

@mocurly
def test_count_recurly_accounts() :
for i in range (10):
recurly.Account (account_code=str (i)) .save ()
assert count_recurly_accounts () == 10

1.2.2 Mocurly as context manager

def test_count_recurly_accounts() :
with mocurly () :
for i in range (10):
recurly.Account (account_code=str (i)) .save ()
assert count_recurly_accounts () == 10

4 Chapter 1. Usage

mocurly Documentation, Release 0.2.3

1.2.3 Mocurly used manually

def test_count_recurly_accounts():
mocurly_ = mocurly ()
mocurly_.start ()

for i in range(10):
recurly.Account (account_code=str (1)) .save ()

assert count_recurly_accounts () == 10

mocurly_.stop()

1.3 Advanced Usage

1.3.1 Error handling
Mocurly supports simulating certain error scenarios that commonly occur through the use of Recurly. Currently, as of
version 0.2.3, Mocurly supports the following three scenarios:

* Request timeout

* Request timeout with a successful POST

* Declined transactions

Note that at this time, error handling is only supported in manual usage.

Request timeout

Sometimes API calls may timeout. This may be due to faulty internet connections, or a server outage at recurly.com.
While this is an unlikely case, we want to be prepared for those scenarios. That is why Mocurly supports simulating a
request that times out.

To trigger timeouts for requests, you can use the start_timeout () method on your mocurly instance, assuming
the context has been started. When called, this will trigger Mocurly to always simulate a timeout by raising an ss1.
SSLError exception for all requests.

You can stop this behavior at any point by calling the stop_timeout () method.

In the following code snippet, the first save () call will raise an ssl.SSLError because it is wrapped in the
timeout context, but the second will succeed:

>>> mocurly_ = mocurly ()

>>> mocurly_.start ()

>>> mocurly_.start_timeout ()

>>> # wWill fail

>>> recurly.Account (account_code="'foo') .save ()
>>> mocurly_.stop_timeout ()

>>> # Will succeed

>>> recurly.Account (account_code="'foo'") .save ()
>>> mocurly_.stop()

You can also pass an optional filter function to start_timeout () to control what requests get timed out. The filter
function will receive a request object, which contains several attributes you can use to filter the call on. Refer to the
API reference for more details on what attributes the request object contains.

1.3. Advanced Usage 5

mocurly Documentation, Release 0.2.3

For example, the following snippet will only trigger timeouts on GET requests:

>>> mocurly_ = mocurly ()

>>> mocurly_.start ()

>>> mocurly_.start_timeout (lambda request: request.method == 'GET')
>>> # Will succeed

>>> recurly.Account (account_code="'foo'") .save ()

>>> # Will fail

>>> recurly.Account.get ('foo'")
>>> mocurly_.stop_timeout ()
>>> mocurly_.stop()

Request timeout with a successful POST

As mentioned in the previous section, Mocurly supports simulating requests that timeout. However, sometimes the
request times out while receiving a response from the Recurly servers, after the POST request has successfully reached
the Recurly server. These cases are especially difficult to deal with, because the Python client raises an exception, even
though the request went through and created the object on Recurly’s side, which could have charged the user’s credit
card. Mocurly supports this scenario as well, using a similar syntax as simulating request timeout.

To simulate a request timeout with a successfuly POST, use the start_timeout_successful_post () method
of the Mocurly instance.

Note that by nature of the simulation, this will only simulate the timeout on POST requests. This means that you can
use this in combination with start_timeout () to simulate complex timeout scenarios.

In the following example, although the save call fails, the account will still be created in the Mocurly database:

>>> mocurly_ = mocurly()

>>> mocurly_.start ()

>>> mocurly_.start_timeout_successful_post ()

>>> # Will fail, but the account is created successfully
>>> recurly.Account (account_code="'foo") .save ()

>>> recurly.Account.get ('foo') # returns an actual account
>>> mocurly_.stop_timeout_successful_post ()

>>> mocurly_.stop()

Like start_timeout (), this can also take in a filter function to simulate the timeout only on certain requests.

Declined transactions

When we deal with real credit cards out in the wild, there will always be a case where a transaction might fail due to
a declined credit card. Mocurly supports simulating transaction requests with a declined credit card, both for one time
transactions and subscription payments.

To trigger a declined credit card, use the register_transaction_failure () method on your mocurly in-
stance. register_transaction_failure () takes two arguments: the account_code of the user who’s credit
card will be rejected, and the error code to use. These error codes should be pulled from mocurly.errors. Refer to the
API reference for more info on what error codes are available.

In the following snippet, the transaction made for Joe will be declined by Mocurly, but not for Billy:

>>> mocurly_ = mocurly ()

>>> mocurly_.start ()

>>> mocurly_.register_transaction_failure('joe', mocurly.errors.TRANSACTION_DECLINED)
>>> joe = recurly.Account.get ('joe')

(continues on next page)

6 Chapter 1. Usage

mocurly Documentation, Release 0.2.3

(continued from previous page)

>>> recurly.Transaction (amount_in_cents=10, currency='USD', account=joe) .save() #
—will fail

>>> billy = recurly.Account.get ('joe')

>>> recurly.Transaction (amount_in_cents=10, currency='USD', account=billy) .save() #_

[

—will succeed
>>> mocurly_.stop()

1.3. Advanced Usage 7

mocurly Documentation, Release 0.2.3

8 Chapter 1. Usage

CHAPTER 2

LICENSE

The MIT License (MIT)
Copyright (c) 2014 Captricity

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

mocurly Documentation, Release 0.2.3

10 Chapter 2. LICENSE

Python Module Index

m

mocurly, 3

11

mocurly Documentation, Release 0.2.3

12 Python Module Index

Index

M

mocurly (class in mocurly), 3
mocurly (module), 3

R

register_transaction_failure() (mocurly.mocurly method),
3

S

start() (mocurly.mocurly method), 3

start_timeout() (mocurly.mocurly method), 3

start_timeout_successful_post() (mocurly.mocurly
method), 3

stop() (mocurly.mocurly method), 4

stop_timeout() (mocurly.mocurly method), 4

stop_timeout_successful_post() (mocurly.mocurly
method), 4

13

	Usage
	API Documentation
	Basic Usage
	Advanced Usage

	LICENSE
	Python Module Index

